Interference and Rate Analysis of Multinumerology NOMA
2020
5G communication systems and beyond are envisioned to support an extremely diverse set of use cases with different performance requirements. These different requirements necessitate the use of different numerologies for increased flexibility. Non-orthogonal multiple access (NOMA) can potentially attain this flexibility by superimposing user signals while offering improved spectral efficiency (SE). However, users with different numerologies have different symbol durations. When combined with NOMA, this changes the nature of the interference the users impose on each other. This paper investigates a multinumerology NOMA (MN-NOMA) scheme using successive interference cancellation (SIC) as an enabler for coexistence of users with with different numerologies. Analytical expressions for the inter-numerology interference (INI) experienced by each user at the receiver are derived, where mean-squared error (MSE) is the metric used to quantity INI. Using the MSE expressions, we analytically derive achievable rates for each user in the MN-NOMA system. These expressions are then evaluated and used to compare the SE performance of MN-NOMA with that of its single-numerology counterpart. The proposed scheme can achieve the desired flexibility in supporting diverse use cases in future wireless networks. The scheme also gains the SE benefits of NOMA compared to both multinumerology and single numerology orthogonal multiple access (OMA) schemes.
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
0
References
4
Citations
NaN
KQI