Numerical Investigation of Configurations with Optimum Swirl Recovery for Propeller Propulsion Systems

2019 
This paper addresses the design of swirl recovery vanes for propeller propulsion in tractor configuration at cruise conditions using numerical tools. A multifidelity optimization framework is formulated for the design purpose, which exploits low-fidelity potential flow-based analysis results as input for high-fidelity Euler equation-based simulations. Furthermore, a model alignment procedure between low- and high-fidelity models is established based on a shape-preserving response prediction algorithm. Two cases of swirl recovery are examined. The first is the swirl recovery by the trailing wing, which leads to a reduction of the lift-induced drag. This is achieved by the optimization of the wing twist distribution. The second case is swirl recovery by a set of stationary vanes, which leads to production of additional thrust. In the latter case, four configurations are evaluated by locating the vanes at different azimuthal and axial positions relative to the wing. An optimum configuration is identified whe...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    19
    References
    1
    Citations
    NaN
    KQI
    []