Sliding mode control with system constraints for aircraft engines

2019 
Abstract This paper proposes a constraint-tolerant design with sliding mode strategy to improve the stability of aircraft engine control. To handle the difficulties associated with the high-frequency switching laws, merely attenuating the chattering is far from satisfactory. System constraints on input, output, and input rate should be addressed in the design process. For a sort of uncertain nonlinear systems subjected to the constraints, sliding mode regulators are designed using Lyapunov analysis. A turbofan engine is adopted for simulation, which shows that the methodology developed in this paper can handle the speed tracking and limit protection problem in a stable fashion, despite the negative influence posed by the system constraints.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    3
    Citations
    NaN
    KQI
    []