Visual Interpretation of Kernel-Based Prediction Models.

2011 
Statistical models are frequently used to estimate molecular properties, e.g., to establish quantitative structure-activity and structure-property relationships. For such models, interpretability, knowledge of the domain of applicability, and an estimate of confidence in the predictions are essential. We develop and validate a method for the interpretation of kernel-based prediction models. As a consequence of interpretability, the method helps to assess the domain of applicability of a model, to judge the reliability of a prediction, and to determine relevant molecular features. Increased interpretability also facilitates the acceptance of such models. Our method is based on visualization: For each prediction, the most contributing training samples are computed and visualized. We quantitatively show the effectiveness of our approach by conducting a questionnaire study with 71 participants, resulting in significant improvements of the participants' ability to distinguish between correct and incorrect predictions of a Gaussian process model for Ames mutagenicity.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    23
    References
    50
    Citations
    NaN
    KQI
    []