Convergence analysis of a nonlinear Lagrangian method for nonconvex semidefinite programmingwith subproblem inexactly solved

2014 
In this paper, we analyze the convergence properties of a nonlinear Lagrangian method based on Log-Sigmoid function for nonconvex semidefinite programming (NCSDP) problems. It is different from other convergence analysis, because the subproblem in our algorithm is inexactly solved. Under the constraint nondegeneracy condition, the strict complementarity condition and the second order sufficient conditions, it is obtained that the nonlinear Lagrangian algorithm proposed is locally convergent by choosing a proper stopping criterion and the error bound of solution is proportional to the penalty parameter when the penalty parameter is less than a threshold.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    0
    Citations
    NaN
    KQI
    []