Dengue activates mTORC2 signaling to counteract apoptosis and maximize viral replication

2020 
The mechanistic target of rapamycin (mTOR) functions in at least two distinct complexes: mTORC1, which regulates cellular anabolic-catabolic homeostasis, and mTORC2, which is an important regulator of cell survival and cytoskeletal maintenance. mTORC1 has been implicated in the pathogenesis of flaviviruses including dengue, where it contributes to the establishment of a pro-viral autophagic state. In contrast, the role of mTORC2 in viral pathogenesis is unknown. In this study, we explore the consequences of a physical protein-protein interaction between dengue non-structural protein 5 (NS5) and host cell mTOR proteins during infection. Using shRNA to differentially target mTORC1 and mTORC2 complexes, we show that mTORC2 is required for optimal dengue replication. Furthermore, we show that mTORC2 is activated during viral replication, and that mTORC2 counteracts virus-induced apoptosis, promoting the survival of infected cells. This work reveals a novel mechanism by which the dengue flavivirus can promote cell survival to maximize viral replication.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    45
    References
    1
    Citations
    NaN
    KQI
    []