Ultra-low-dose CT combined with noise reduction techniques for quantification of emphysema in COPD patients: An intra-individual comparison study with standard-dose CT.

2021 
Abstract Purpose Phantom studies in CT emphysema quantification show that iterative reconstruction and deep learning-based noise reduction (DLNR) allow lower radiation dose. We compared emphysema quantification on ultra-low-dose CT (ULDCT) with and without noise reduction, to standard-dose CT (SDCT) in chronic obstructive pulmonary disease (COPD). Method Forty-nine COPD patients underwent ULDCT (third generation dual-source CT; 70ref-mAs, Sn-filter 100kVp; median CTDIvol 0.38 mGy) and SDCT (64-multidetector CT; 40mAs, 120kVp; CTDIvol 3.04 mGy). Scans were reconstructed with filtered backprojection (FBP) and soft kernel. For ULDCT, we also applied advanced modelled iterative reconstruction (ADMIRE), levels 1/3/5, and DLNR, levels 1/3/5/9. Emphysema was quantified as Low Attenuation Value percentage (LAV%, ≤-950HU). ULDCT measures were compared to SDCT as reference standard. Results For ULDCT, the median radiation dose was 84 % lower than for SDCT. Median extent of emphysema was 18.6 % for ULD-FBP and 15.4 % for SDCT (inter-quartile range: 11.8–28.4 % and 9.2 %–28.7 %, p = 0.002). Compared to SDCT, the range in limits of agreement of emphysema quantification as measure of variability was 14.4 for ULD-FBP, 11.0–13.1 for ULD-ADMIRE levels and 10.1–13.9 for ULD-DLNR levels. Optimal settings were ADMIRE 3 and DLNR 3, reducing variability of emphysema quantification by 24 % and 27 %, at slight underestimation of emphysema extent (−1.5 % and −2.9 %, respectively). Conclusions Ultra-low-dose CT in COPD patients allows dose reduction by 84 %. State-of-the-art noise reduction methods in ULDCT resulted in slight underestimation of emphysema compared to SDCT. Noise reduction methods (especially ADMIRE 3 and DLNR 3) reduced variability of emphysema quantification in ULDCT by up to 27 % compared to FBP.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    1
    Citations
    NaN
    KQI
    []