Apigenin ameliorates doxorubicin-induced renal injury via inhibition of oxidative stress and inflammation.

2021 
Abstract Background and objective Doxorubicin (DOX) is an anthracycline antitumor antibiotic widely utilized in treating various tumors. Nevertheless, the toxicity of DOX toward normal cells limits its applicability, with nephrotoxicity considered a major dose-limiting adverse effect. Apigenin (APG), a flavonoid widely distributed in natural plants, has been reported to have antioxidant, anti-inflammatory, and mild tumor-suppressive properties. In this study, we investigated the role of APG in DOX-induced nephrotoxicity and chemotherapeutic efficacy. Methods Male BALB/c mice were administered DOX (11.5 mg/kg) via the tail vein to establish the DOX nephropathy model. After treatment with or without APG (125, 250, and 500 mg/kg) for two weeks, urine, serum, and tissue samples were collected to evaluate proteinuria, serum albumin, serum creatinine (Scr), blood urea nitrogen (BUN), superoxide dismutase (SOD) activity, malondialdehyde (MDA), glutathione (GSH), and pathological changes. Rat renal tubular epithelial cells (NRK52E), murine podocyte cells (MPC5), and murine breast cancer cells (4T1) were utilized to verify the effect of APG on DOX-induced cell injury. An MTT assay was employed to analyze cell viability. Apoptosis was evaluated using a colorimetric TUNEL staining and cleaved caspase-3 protein analysis by western blotting. A reactive oxygen species (ROS)/superoxide (O2-) fluorescence probe was employed to determine oxidative injury. Western blotting was used to analyze nephrin, α-smooth muscle actin (α-SMA), collagen I (Col1), fibronectin (FN), and SOD2 expression. The mRNA levels of tumor necrosis factor-α (TNF-α), interleukin-18 (IL-18), IL-6, NACHT, LRR, PYD domain-containing protein 3 (NLRP3), caspase-1, and IL-1β were tested by reverse transcription-polymerase chain reaction (RT-PCR). Results APG ameliorated DOX-elicited renal injuries in both the glomeruli and tubules. The DOX + APG groups had much lower tissue MDA, IL-6, TNF-α, NLRP3, caspase-1, and IL-1β levels and generation of intracellular ROS, but significantly higher SOD activity and GSH levels compared to those of the DOX group. Additionally, APG attenuated DOX-induced morphological changes, loss of cellular viability, and apoptosis in NRK-52E and MPC-5 cells, but not in 4T1 cells. Conclusion APG has a protective role against DOX-induced nephrotoxicity, without weakening DOX cytotoxicity in malignant tumors. Thus, APG may serve as a potential protective agent against renal injury and inflammatory diseases and may be a promising candidate to attenuate renal toxicity in cancer patients treated with DOX.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    10
    Citations
    NaN
    KQI
    []