The Shh/Gli1 signaling pathway regulates regeneration via transcription factor Olig1 expression after focal cerebral ischemia in rats.

2021 
Objective Ischemic stroke is a major cause of death in the global population, with a high disability and mortality rate. Lack of regenerative ability is considered to be the fundamental cause. This study aims to determine the effect of Shh pathway, which mediates regenerative signaling in response to CNS injury, on myelin repair and Olig1 expression in focal ischemic lesions in the rat. Methods A model of middle cerebral artery occlusion (MCAO) was established using the intraluminal suture method where the middle cerebral artery (MCA) was restricted for 120 min. Cyclopamine, a specific inhibitor of Shh, or saline was administered 12 h after MCAO surgery and lasted for 7 days. After MCA occlusion, male Sprague-Dawley rats were randomly allocated to cyclopamine- or saline-treated groups. A group of no-injection animals after MCAO were used as controls. The Shh signaling pathway, myelinogenesis-related factor MBP and Olig1 were testedby immunohistochemistry and RT-PCR assay. Results The levels of Shh and its component Gli1 were elevated from 1 d up to 14 d following ischemia, indicating that the Shh-Gli1 axis was broadly reactivated. Treatment with cyclopamine can partially block the Shh signaling pathway, prevent myelin repair, and decrease the Olig1 expression following ischemic stroke. Conclusion That blockade of Shh signaling concurrently with the creation of a lesion aggravated ischemic myelin damage, probably via its downstream effects on Olig1 transcription. Shh plays a contributory role during regeneration in the CNS, thereby providing promising new therapeutic strategies to assist in recovery from ischemic stroke.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    53
    References
    0
    Citations
    NaN
    KQI
    []