Development of Bioinspired Mn4O4-Cubane Water Oxidation Catalysts: Lessons from Photosynthesis

2009 
Hydrogen is the most promising fuel of the future owing to its carbon-free, high-energy content and potential to be efficiently converted into either electrical or thermal energy. The greatest technical barrier to accessing this renewable resource remains the inability to create inexpensive catalysts for the solar-driven oxidation of water. To date, the most efficient system that uses solar energy to oxidize water is the photosystem II water-oxidizing complex (PSII-WOC), which is found within naturally occurring photosynthetic organisms. The catalytic core of this enzyme is a CaMn4Ox cluster, which is present in all known species of oxygenic phototrophs and has been conserved since the emergence of this type of photosynthesis about 2.5 billion years ago. The key features that facilitate the catalytic success of the PSII-WOC offer important lessons for the design of abiological water oxidation catalysts. In this Account, we examine the chemical principles that may govern the PSII-WOC by comparing the water...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    54
    References
    450
    Citations
    NaN
    KQI
    []