The effects of O-substituents of hexahomotrioxacalix[3]arene on potentiometric discrimination between dopamine and biological organic/inorganic cations

2007 
As an interesting type of molecular recognition at a membrane surface, the tri-O-acetic acid ester (host 2) of hexahomotrioxacalix[3]arene, when incorporated into poly(vinyl chloride) (PVC) liquid membranes, displays a high potentiometric selectivity for dopamine over, not only other catecholamines (noradrenaline, adrenaline), but also quaternary ammonium guests (tetramethylammonium, choline, and acetylcholine) and inorganic cations (Na+, K+, NH4+). Interestingly, changes in membrane potential based on the host–guest complexation of host 2 that were observed dopamine/inorganic cation selectivity were not displayed by the related hosts 3 and 4, which contain amide substituents. This paper describes our efforts to separately estimate the two factors contributing to the dopamine selectivities, i.e., the guest lipophilicity factor and the host–guest complexation factor, in an attempt to understand the effects of the O-substituents of these hosts. The potentiometric experiments showed that, although the guests had roughly equal lipophilicity, the electromotive force (EMF) response for dopamine by host 2 was excellent. Furthermore, host 2 displayed ca. a 20-fold stronger complexation for dopamine, compared to noradrenaline, adrenaline, K+, and NH4+ cations. These results indicate that the high potentiometric selectivity of the ion-selective electrode for dopamine mainly reflect, not the guest lipophilicity factor but the host–guest complexation factor. On the other hand, host 3 displayed ca. a 3000-fold stronger binding to Na+ than dopamine, thus explaining the reasons for the lower dopamine-selectivities of host 3 compared to host 2. It is interesting to note that the high potentiometric selectivities for dopamine were displayed by not only host 2 but also host 5, regardless of the simple structure of the O-substituents.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    19
    References
    4
    Citations
    NaN
    KQI
    []