P2BA: A Privacy-Preserving Protocol With Batch Authentication Against Semi-Trusted RSUs in Vehicular Ad Hoc Networks

2021 
Vehicular Ad-hoc Networks (VANETs) supporting the seamless operation of autonomous vehicles introduce various network-connected devices. The widespread devices are engaged in VANETs so that users can enjoy advantageous computing and reliable services. The combination brings in massive real-time message propagation and dissemination, which would be leveraged by the adversaries to perform data association, integration analysis and privacy mining. To address such challenges, existing authentication schemes use $n$ pseudonym certificates for pre-defined $k$ times and try to keep the vehicles anonymous. These schemes require fresh certificates for each authentication process, which cost more communication and storage resources. In this paper, we propose a novel privacy-preserving authentication protocol (P2BA) in bilinear groups, where a registered vehicle signs a traffic-related message and sends it to the nearby Road-side Unit (RSU) together with its blinded certificate. The RSU is able to independently check the message for validity based on a non-interactive zero-knowledge proof protocol. In this way, the computation time has been reduced from $\mathcal {O}(n)$ to $\mathcal {O}(1)$ while the storage overhead from $\mathcal {O}(nk)$ to $\mathcal {O}(n)$ compared to anonymous authentication protocols. Moreover, our scheme provides privacy properties such as anonymity and unlinkability. The simulations show that the message authentication can be processed by individual RSUs within 1 ms under the batch-enabled scheme, which outperforms the existing schemes in terms of computation overhead and latency.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    23
    References
    0
    Citations
    NaN
    KQI
    []