Scalar correlation functions for a double-well potential in de Sitter space

2020 
We use the spectral representation of the stochastic Starobinsky-Yokoyama approach to compute correlation functions in de Sitter space for a scalar field with a symmetric or asymmetric double-well potential. The terms in the spectral expansion are determined by the eigenvalues and eigenfunctions of the time-independent Fokker-Planck differential operator, and we solve them numerically. The long-distance asymptotic behaviour is given by the lowest state in the spectrum, but we demonstrate that the magnitude of the coeffients of different terms can be very different, and the correlator can be dominated by different terms at different distances. This can give rise to potentially observable cosmological signatures. In many cases the dominant states in the expansion do not correspond to small fluctuations around a minimum of the potential and are therefore not visible in perturbation theory. We discuss the physical interpretation these states, which can be present even when the potential has only one minimum.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    87
    References
    8
    Citations
    NaN
    KQI
    []