Extraction of light trapped due to total internal reflection using porous high refractive index nanoparticle films.
2014
TiO2 nanoparticle layers composed of columnar TiO2 nanoparticle piles separated with nanoscale pores were fabricated on the bottom surface of the hemispherical glass prism by performing gas phase cluster beam deposition at glancing incidence. The porosity as well as the refractive index of the nanoparticle layer was precisely tuned by the incident angle. Effective extraction of the light trapped in the substrate due to total internal reflection with the TiO2 nanoparticle layers was demonstrated and the extraction efficiency was found to increase with the porosity. An enhanced Rayleigh scattering mechanism, which results from the columnar aggregation of the nanoparticles as well as the strong contrast in the refractive index between pores and TiO2 nanoparticles in the nanoporous structures, was proposed. The porous TiO2 nanoparticle coatings were fabricated on the surface of GaN LEDs to enhance their light output. A nearly 92% PL enhancement as well as a 30% EL enhancement was observed. For LED applications, the enhanced light extraction with the TiO2 nanoparticle porous layers can be a supplement to the microscale texturing process for light extraction enhancement.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
41
References
35
Citations
NaN
KQI