Extensions of Some guidelines for the mechanical design of coaxial compression pin seals

1993 
Compression seals are commonly used in electronic components. Because glass has such a low fracture toughness, tensile residual stresses must be kept low to avoid crackS. N. Burchett analyzed a variety of compression pin seals to identify mechanically optimal configurations when work hardened Alloy 52 conductor pins are sealed in a 304 stainless steel housing with a Kimble TM-9 glass insulator. Mechanical property tests on Alloy 52, have shown that the heat treatments encountered in a typical glass sealing cycle are capable of annealing the Alloy 52 pins, increasing ductility and lowering the yield strength. Since most seal analyses are routinely based on unannealed Alloy 52 properties, a limited study has been performed to determine the design impact of lowering the yield strength of the pins in a typical compression seal. Thermal residual stresses were computed in coaxial compression seals with annealed pins and the results then were used to reconstruct design guidelines following the procedures employed by Miller and Burchett. Annealing was found to significantly narrow the optimal design range (as defined by a dimensionless geometric parameter). The Miller-Burchett analyses which were based on very coarse finite element meshes and a 50 ksi yield strength fortuitously predicted an overlymore » conservative design range that is a subset of the narrow design window prevalent when the yield strength is assumed to be 34 ksi. This may not remain true for lower yield strengths. The presence of pin wetting was shown to exacerbate the glass stress state. The time is right to develop a modern and enhanced set of design guidelines which could address new material systems, three dimensional geometries, and viscoelastic effects.« less
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []