Deep Learning-Based Gear Pitting Severity Assessment Using Acoustic Emission, Vibration and Currents Signals

2019 
A method for gearbox pitting faults severity classification using Deep Learning techniques is reported. The signals are preprocessed for obtaining a 2D time-frequency representation corresponding to the Mel Frequency Cepstral Coefficients. This bi-dimensional representation is the feature space used for classification. A Long Short Term Memory network (LSTM) is used for classifying nine levels of pitting in spur gears. Each signals dataset is used for training and validating a LSTM network. Classification accuracies up to 100 % are obtained during cross-validation with the analyzed signals dataset.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    14
    References
    5
    Citations
    NaN
    KQI
    []