Marked increase of insulin gene transcription by suppression of the Rho/Rho-kinase pathway.

2006 
The hallmarks of type 2 diabetes are pancreatic β-cell dysfunction and insulin resistance. It has been suggested that Rho/Rho-kinase is a mediator of insulin signaling, and thereby involved in the development of insulin resistance, regulation of insulin action, and glucose homeostasis, but the role of Rho/Rho-kinase in β-cells remained unknown. The aim of this study was to examine the possible role of Rho/Rho-kinase in β-cell function. Immunostaining showed that RhoA was expressed in mature β-cells, with higher expression observed in β-cells of diabetic C57BL/KsJ-db/db mice compared to non-diabetic mice. In addition, to examine the functional role of Rho/Rho-kinase in β-cells, we evaluated the effect of Rho-kinase inhibitors on insulin biosynthesis. Northern blot analysis showed that insulin mRNA levels were markedly increased by Rho-kinase inhibitors, Y-27632 and fasudil, in β-cell-derived HIT-T15 cells. Furthermore, using the luciferase reporter gene assay, insulin promoter activity was also dramatically increased by Y-27632, which was associated with an increase in the insulin mRNA level. These results suggest that suppression of Rho/Rho-kinase increases insulin promoter activity, which leads to an increase in insulin mRNA level. Taken together, Rho/Rho-kinase is activated in β-cells under diabetic conditions and suppression of the Rho/Rho-kinase pathway increases insulin gene transcription. These results imply that Rho/Rho-kinase activation is involved in the suppression of insulin expression found in diabetes and that suppression of the Rho/Rho-kinase pathway could be a useful tool to augment insulin gene transcription.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    22
    References
    21
    Citations
    NaN
    KQI
    []