Kazikli temellerin deprem performanslarinin üç boyutlu sonlu elemanlar yöntemi ile incelenmesi

2006 
In this study a general nonlinear dynamic analysis procedure for pile foundations has been applied successfully to investigate the nonlinear behaviors of soils, being particularly large at interfaces soil layers which sharply differing shear module, under earthquake loads. Generally, long piles penetrating deep layered deposit, particularly when there is a sudden change in soil stiffness are likely to be exerted by large ground response forces. However, such as ground forces are termed simply as “ground response effects” in dynamic pile-soil interaction, which are generally neglected in the pile design practice. Investigations on damage to piles during the past earthquakes provide some basic information concerning the nature of failures in piles at locations with deep soil deposit under strong ground shaking. Remarkably significant instance of the damage is reported to have occurred at deeper parts along the pile, particularly in relatively longer piles. Evidently, the location of pile damage at the intermediate part in longer piles also tends to coincide with changes in soil layering, giving rise to stiffness contrast interface. By means of this study, considering two simple variations in soil condition, other structural details remaining the same, it is shown that the influence of soil layering on the stresses developed in piles during earthquake shaking can bevery dominant. Numerical results obtained from this study show the need for adequate consideration of the ground deformation response effects in the pile design in relatively soil conditions.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    2
    References
    0
    Citations
    NaN
    KQI
    []