The arsenic source term for an in-pit uranium mine tailings facility and its long-term impact on the regional groundwater
2008
Abstract Detailed field sampling and analyses and laboratory-based diffusion-cell experiments were used in conjunction with 3-D reactive transport modeling (MODFLOW and MT3D99) to quantify the fate and long-term (10 ka) transport of As in the Rabbit Lake In-pit Tailings Management Facility (RLITMF), northern Saskatchewan, Canada. The RLITMF (300 m × 425 m × 90 m thick) was engineered to ensure solute transport within the RLITMF is dominated by diffusion. Concentrations of As in the tailings pore fluids ranged from 0.24 to 140 mg/L ( n = 43). Arsenic speciation analyses indicate 90% of this arsenic exists as As 5+ . This observation is supported by pH–Eh measurements of pore fluids ( n = 135). Geochemical analyses yielded a strong inverse correlation between the Fe/As molar ratio in the tailings solids and the corresponding concentration of dissolved As, which is attributed to the adsorption of As to secondary 2-line ferrihydrite present in the tailings. Diffusion-cell testing yielded values for the effective diffusion coefficient, sorption coefficient, and effective porosity of As in the tailings of 4.5 × 10 −10 m 2 /s, 2–4 cm 3 /g and 0.36, respectively. Reactive transport simulations using the field and laboratory data show adsorption of As to the tailings and diffusive transport of dissolved As in the tailings should reduce the source term concentration of As to between 40% and 70% of the initial concentrations over the 10 ka simulation period. Based on these simulations, the As concentrations in the regional groundwater, 50 m down gradient of the tailings facility, should be maintained at background concentrations of 0.001 mg/L over the 10 ka period. These findings suggest the engineered in-pit disposal of U mine tailings can provide long-term protection for the local groundwater regime from As contamination.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
11
References
22
Citations
NaN
KQI