Sorption Isotherms and Isosteric Heat of Peanut Pods, Kernels and Hulls:

2007 
This study was carried out to evaluate the sorption isotherms of peanut pods, kernels and hulls for several temperature and humidity conditions and to fit different mathematical models to the experimental data, selecting the one best fitting the phenomenon. The dynamic method was applied to obtain the hygroscopic equilibrium moisture content. The environmental conditions were provided by means of an atmospheric conditioning unit, in which removable perforated trays were placed to allow air to pass through peanut mass, each one containing 50 g of the product. The mathematical models frequently used for the representation of hygroscopicity of agricultural products were fit to the experimental data. Based on those results, it was concluded that peanut pods, kernels and hulls presented differentiated hygroscopicity. The equilibrium moisture content for peanut pods, kernels and hulls increased with an increase in the relative humidity at any particular temperature and decreased with increase in temperature at constant relative humidity. At a constant water activity, peanut hulls samples had higher equilibrium moisture content than the pods and kernels samples. Based on statistical parameters, the modified Henderson and Chung-Pfost models were found to adequately describe the sorption characteristics of peanut pods, kernels and hulls. Isosteric heat of desorption were evaluated by applying the Clausius�Clapeyron equation to experimental isotherms and decreased with increasing moisture content. The peanut hulls had higher isosteric heat of sorption than that peanut pods and kernels.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    29
    Citations
    NaN
    KQI
    []