language-icon Old Web
English
Sign In

Torsional hysteresis of mild steel

1917 
The stress-strain curve from no load to fracture for mild steel as usually obtained consists of three parts: (1) A straight line, followed by a part deviating only slightly from this straight portion; (2) a sharp bend, followed by a part approximately parallel to the strain axis; and (3) a curved rising part, leading ultimately to the breaking point. It is generally assumed that Hooke’s Law holds throughout the part (1), and is immediately followed by the sharply defined bend which constitutes the yield point. For mild steel first stressed in tension and then in compression, or subjected to positive and then negative torsional stresses, the stress-strain curve within a considerable range of stress is also supposed to be a straight line. It is further well known that if mild steel is stressed in tension beyond the yield point the elastic limit is raised, but only at the expense of lowering it in compression; or, if it is twisted beyond the yield point in one direction, its elastic limit is raised for stresses in that direction, but lowered for those in the opposite direction. Attempts have been made to relate the range of stress through which the stress-strain curve is a straight line with that through which a material, such as mild steel, can be stressed an infinite number of times without fracture. This is expressed by the well known Bauschinger’s Law, which, as stated by Mr. Leonard Bairstow, is as follows:—“The superior limit of elasticity can be raised or lowered by cyclical variations of stress, and at the inferior limit of elasticity will be raised or lowered by a definite, but not necessarily the same, amount. The range of stress between the two elastic limits has therefore a value which depends only on the material and the stress at the inferior limit of elasticity. This elastic range of stress is the same in magnitude as the maximum range of stress, which can be repeatedly applied to a bar without causing fracture, no matter how great the number of repetitions.”
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    2
    Citations
    NaN
    KQI
    []