Enhanced Charge Carrier Transport and Device Performance Through Dual-Cesium Doping in Mixed-Cation Perovskite Solar Cells with Near Unity Free Carrier Ratios
2017
PbI2-enriched mixed perovskite film [FA0.81MA0.15Pb(I0.836Br0.15)3] has been widely studied due to its great potential in perovskite solar cell (PSC) applications. Herein, a FA0.81MA0.15Pb(I0.836Br0.15)3 film has been fabricated with the temperature-dependent optical absorption spectra utilized to determine its exciton binding energy. A ∼13 meV exciton binding energy is estimated, and a near-unity fraction of free carriers out of the total photoexcitons has been obtained in the solar cell operating regime at equilibrium state. PSCs are fabricated with this mixed perovskite film, but a significant electron transport barrier at the TiO2–perovskite interface limited their performance. Cs2CO3 and CsI are then utilized as functional enhancers with which to substantially balance the electron and hole transport and increase the carriers (both electrons and holes) mobilities in PSCs, resulting in much-improved solar-cell performance. The modified PSCs exhibit reproducible power conversion efficiency (PCE) values ...
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
57
References
26
Citations
NaN
KQI