Renewable Thermosets and Thermoplastics from Itaconic Acid

2019 
Renewable materials are a research necessity, with the creation of a sustainable chemical industry representing a grand challenge for the field of chemistry and materials science. On this basis, biorenewable resources are being transformed into degradable or recyclable high value polymers with a diverse array of applications. Itaconic acid (IA) is a notable biorenewable resource due to its low cost and large annual production. We report the synthesis of renewable thermosets and thermoplastics that are almost completely derived from IA. Using catalytic, solvent-free, and high yielding transformations from an itaconate source, we efficiently synthesized a saturated diol, a saturated diester, and an unsaturated diester. Subsequent binary step-growth polycondensation polymerizations between the diol and either diester generated polyesters with relatively high molar masses (>10 kg/mol). Ternary polymerizations of all three monomers in varying feed ratios produced polyesters with tunable amounts of unsaturated ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    108
    References
    29
    Citations
    NaN
    KQI
    []