Time Correlated Single Photon Spectroscopy on Pyramidal Quantum Dots

2015 
We report on excitonic single photon emission and biexcitonic photon bunching from an InGaN quantum dot formed on the apex of a hexagonal GaN micropyramid. An approach to suppress uncorrelated emission from the pyramid base is proposed, a metal lm is demonstrated to eectively screen background emission and thereby signicantly enhance the signal-to-background ratio of the quantum dot emission. As a result, the second order coherence function at zero time delay g(2)(0) is signicantly reduced (to g(2)(0) = 0.24, raw value) for the excitonic autocorrelation at a temperature of 12 K under continuous wave excitation, and a dominating single photon emission is demonstrated to survive up to 50 K. The deterioration of the g(2)(0)-value at elevated temperatures is well understood as the combined eect of reduced signal-to-background ratio and limited time resolution of the setup. This result underlines the great potential of site controlled pyramidal dots as sources of fast polarized single photons.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    92
    References
    3
    Citations
    NaN
    KQI
    []