Room-temperature InGaAs nanowire array band-edge lasers on patterned silicon-on-insulator platforms

2019 
Integration of ultracompact light sources on silicon platforms is regarded as a crucial requirement for various nanophotonic applications. In this work, InGaAs/InP core/shell nanowire array photonic crystal lasers are demon- strated on silicon-on-insulator substrates by selective-area epitaxy. 9  9 square-lattice nanowires forming photonic crystal cavities with a footprint of only 3.0  3.0 μm 2 , and a high Q factor of 23 000 are achieved by forming these nanowires on two-dimensional silicon gratings. Room-temperature lasing is observed from a fundamental band-edge mode at 1290 nm, which is the O-band of the telecommunication wavelength. Optimized growth templates and effective in-situ passivation of InGaAs nanowires enable the nanowire array to lase at a low threshold of 200 μJcm 2 , without any signature of heating or degradation above the threshold. These results represent a meaningful step toward ultracompact and monolithic III–V lasers on silicon photonic platforms
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    10
    Citations
    NaN
    KQI
    []