Machine Learning Force Fields: Recent Advances and Remaining Challenges.

2021 
In chemistry and physics, machine learning (ML) methods promise transformative impacts by advancing modeling and improving our understanding of complex molecules and materials. Each ML method comprises a mathematically well-defined procedure, and an increasingly larger number of easy-to-use ML packages for modeling atomistic systems are becoming available. In this Perspective, we discuss the general aspects of ML techniques in the context of creating ML force fields. We describe common features of ML modeling and quantum-mechanical approximations, so-called global and local ML models, and the physical differences behind these two classes of approaches. Finally, we describe the recent developments and emerging directions in the field of ML-driven molecular modeling. This Perspective aims to inspire interdisciplinary collaborations crossing the borders between physical chemistry, chemical physics, computer science, and data science.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    74
    References
    3
    Citations
    NaN
    KQI
    []