Inhibitory Effect of Adsorbed Water on the Transport of Methane in Carbon Nanotubes

2017 
We investigate the transport diffusion of methane at 300 K and pressures of up to 15 bar in dry and wetted carbon nanotubes (CNTs) having diameters ranging from 0.95 to 2.034 nm using nonequilibrium molecular dynamics (NEMD) simulation. Because of their strong hydrogen bonding, preadsorbed water molecules transport in the form of clusters and block the diffusion of methane, reducing the Onsager coefficient of methane dramatically compared to that in dry CNTs. The reduction in the methane Onsager coefficient is greater in narrower CNTs or at higher water densities. Because the diameter of the water clusters is almost invariant with water density, the Onsager coefficient of water in the (10, 10) CNT increases linearly with water density. It is further found that whereas decreasing the CNT diameter from 2.034 to 0.95 nm enhances the Onsager coefficient of pure methane by about 1 order of magnitude, the Onsager coefficient of water is almost independent of the CNT diameter at a water density of 0.05 g/cm3. We...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    58
    References
    14
    Citations
    NaN
    KQI
    []