Developing an Effective Platform for Introducing Mechanical Engineering in a Large Public University
2012
In conjunction with a shift from an academic calendar based on ten–week quarters to one based on semesters, the Department of Mechanical and Aerospace Engineering at The Ohio State University has completely re–designed the mechanical engineering curriculum. As a part of this re–design, the MAE department has added a new course for sophomores entering the department that will emphasize hands–on skills in machining and electronics while simultaneously giving students a broad introduction to the kinds of problems that mechanical engineers typically confront in industrial practice.This paper describes the evolution of our thinking as we created the teaching platform that is the heart of the course, a multi–cylinder compressed air motor. Lectures are structured to provide ‘just in time’ information to the students as they build and test this platform in the laboratory. It was crucial to create a device that would be complex enough to challenge the students and provide an opportunity to explore the widest possible range of mechanical engineering concepts. After a review of similar courses in other programs, we decided to employ a multi–cylinder compressed air motor, controlled by a commercially available microprocessor, as the teaching platform.Because the course will be required of all students entering the major, an overriding constraint on the design is that the device is simple enough for three hundred students a year, working in teams, to construct and test it. At the same time, the air motors must also be complex enough to support the learning objectives of this course and subsequent courses in the curriculum. Our final design is a direct–injection six–cylinder radial compressed air motor that is controlled by an Arduino© microprocessor. Students will spend five weeks machining and assembling the motors in the machine shop, another four weeks learning to program the Arduino© to control the motor, and the remainder of the term testing and analyzing the performance of the motors.The air motors allow us to introduce students to machine design, engine design, thermodynamics, fluid flow, vibrations, electronics, and controls. We have pilot tested this course twice, and find that the students quickly take ownership of the motors, and are quite interested in optimizing the design to improve performance.Copyright © 2012 by ASME
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
11
References
1
Citations
NaN
KQI