Flowfields around supersonic aerodynamic bodies under the action of asymmetric energy release

2013 
The interaction of an infinite microwave filament and a shock layer is analyzed numerically on the basis of the Euler system of equations. The filament is regarded as a heated rarefied channel (heat layer). Flow details for asymmetrical filament location are researched including the formation of a new position of the stagnation point and the dependence of the front drag force on the filament characteristics and location. The origin of a lift/pitch force in the case of zero angle of attack is discussed. This force is shown to be a function of the shift value from the symmetry axis of the heat layer and the degree of the gas rarefaction in it. The mechanism of the lift/pitch force origination is revealed. These phenomena are analyzed for blunt and pointed bodies at freestream Mach number 1.89 and a wide class of values of infinite filament characteristics: the rarefaction factor and the disposition relative to the body.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    8
    References
    3
    Citations
    NaN
    KQI
    []