Highly nonlinear trion-polaritons in a monolayer semiconductor.

2020 
Highly nonlinear optical materials with strong effective photon-photon interactions are required for ultrafast and quantum optical signal processing circuitry. Here we report strong Kerr-like nonlinearities by employing efficient optical transitions of charged excitons (trions) observed in semiconducting transition metal dichalcogenides (TMDCs). By hybridising trions in monolayer MoSe2 at low electron densities with a microcavity mode, we realise trion-polaritons exhibiting significant energy shifts at small photon fluxes due to phase space filling. We find the ratio of trion- to neutral exciton–polariton interaction strength is in the range from 10 to 100 in TMDC materials and that trion-polariton nonlinearity is comparable to that in other polariton systems. The results are in good agreement with a theory accounting for the composite nature of excitons and trions and deviation of their statistics from that of ideal bosons and fermions. Our findings open a way to scalable quantum optics applications with TMDCs. Here, the authors report the creation of trion-polaritons in monolayer MoSe2 in an open microcavity exhibiting strong nonlinear interactions, one order of magnitude bigger than those observed for exciton polaritons in GaAs.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    1
    Citations
    NaN
    KQI
    []