A GPU-Accelerated Modified Unsharp-Masking Method for High-Frequency Background- Noise Suppression

2021 
A digitized analog signal often encounters a high-frequency noisy background which degrades the signal-to-noise ratio (SNR) particularly in case of low signal strength. Despite quite a lot of hardware- and software-based approaches have been reported to date to deal with the noise issue, it is still a challenging task to real-time retrieve the noise-contaminated low-frequency information efficiently without degrading the original bandwidth. In this paper, we report a modified unsharp-masking (UM)-based Graphics Processing Unit (GPU)-accelerated algorithm to efficiently suppress a high-frequency noisy background in a digitized two-dimensional image. The proposed idea works effectively even if noise-density is high and signal of interest is comparable or weaker than the maximum noise level. While suppressing the noisy background, the original resolution remains least compromised. We first explore the effectiveness of the algorithm by means of simulated images and subsequently extend our demonstration towards a real-world life-science imaging application. Securing a potential for real-time applicability, we implement the algorithm via Compute Unified Device Architecture (CUDA)-acceleration and preserve a $ processing time for a $1000\times 1000$ -sized 8-bit data set.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    2
    Citations
    NaN
    KQI
    []