뉴럴네트워크를 이용한 심음의 정상 비정상 분류
2018
현대인의 사망원인 2위를 차지하고 있는 심장병은 자각 증세 없이 갑자기 돌연사를 당할 수 있는 무서운 질병으로 예방이 중요하다. 심장병 중 대동맥판막 협착증을 판단하기 위해서 physioNet에서 제공하는 심음 데이터 중 S1과 S2 사이의 수축 심음 데이터를 이용하여 병명을 진단하였다. 대동맥 판막은 좌심실에서 대동맥으로 피가 유출되는 부위의 판막이다. 심장병 중 대동맥판막 협착증은 대동맥판막이 좁아져 좌심실의 수축 시 판막이 열리지 않는 질환이다. 위 논문에서는 정상인과 대동맥판막 협착증 환자를 합쳐 특징이 180개로 이루어진 3126개의 샘플 심음 데이터를 실험데이터로 사용하였다. 정상과 대동맥판막 협착증 환자를 구분하기 위해 가중퍼지신경망(NEWFM, Neural Network with Weighted Fuzzy Membership Function)이용하였다. 가중퍼지신경망의 특징선택 방법으로 가중치의 평균 방법을 이용하였으며, 분류 결과는 91.0871%의 정확도를 나타내었다.
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
0
References
0
Citations
NaN
KQI