Automated choroidal segmentation of 1060 nm OCT in healthy and pathologic eyes using a statistical model

2012 
A two stage statistical model based on texture and shape for fully automatic choroidal segmentation of normal and pathologic eyes obtained by a 1060 nm optical coherence tomography (OCT) system is developed. A novel dynamic programming approach is implemented to determine location of the retinal pigment epithelium/ Bruch’s membrane /choriocapillaris (RBC) boundary. The choroidsclera interface (CSI) is segmented using a statistical model. The algorithm is robust even in presence of speckle noise, low signal (thick choroid), retinal pigment epithelium (RPE) detachments and atrophy, drusen, shadowing and other artifacts. Evaluation against a set of 871 manually segmented cross-sectional scans from 12 eyes achieves an average error rate of 13%, computed per tomogram as a ratio of incorrectly classified pixels and the total layer surface. For the first time a fully automatic choroidal segmentation algorithm is successfully applied to a wide range of clinical volumetric OCT data.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    98
    Citations
    NaN
    KQI
    []