Morphological and molecular description of a distinct population of Echinorhynchus gadi Zoega in Müller, 1776 (Paleacanthocephala: Echinorhynchidae) from the pacific halibut Hippoglossus stenolepis Schmidt in Alaska.

2021 
PURPOSE Echinorhynchus gadi is one of the most widely distributed and commonly described acanthocephalans in marine fishes throughout the world. We provide a detailed morphometric and molecular description of a distinct Alaska population collected from the Pacific halibut Hippoglossus stenolepis Schmidt (Pleuronectidae) compared to those from other hosts and regions, illustrating new features never previously reported. METHODS We described new specimens by microscopical studies, augmented by SEM, Energy Dispersive x-ray and molecular analyses, and histopathology. RESULTS Specimens from Alaska were distinguished from those collected from the other geographical areas in proboscis size and its armature, especially number of hook rows and hooks per row, and length of hooks. The size of the receptacle, lemnisci, and reproductive structures in some other collections also varied from the Alaska material. X-ray scans of the gallium cut hooks depict prominent layering with high Sulfur content for tip cuts and increased calcium and phosphorus content in the base area of the hook. Sections of E. gadi specimens in the host tissue show prominent hook entanglement with subsequent connective tissue invasion also depicting the internal anatomy of certain worm structures not readily seen by other means. Molecular analyses clearly confirmed the identity of our E. gadi sequences. CONCLUSION Our Alaska population of the E. gadi complex appears to represent a novel population distinguishable by its distinct morphometrics, geography and host species. We further establish new information on the Energy Dispersive X-ray analysis in our Alaska material for future comparisons with the other siblings and explore genetic relationships among echinorhynchid genera and species.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    0
    Citations
    NaN
    KQI
    []