A high strength, anti-fouling, self-healable, and thermoplastic supramolecular polymer hydrogel with low fibrotic response

2019 
The fibrotic response plays an important role in the performance and longevity of implantable devices. Thus, development of effective anti-inflammatory and anti-fibrosis biomaterial implants has become an urgent task. In this work, we developed a novel supramolecular polymer hydrogel through the copolymerization of N-acryloyl glycinamide (NAGA) and carboxybetaine acrylamide (CBAA) in the absence of any chemical crosslinker, which the mechanical properties being tunable through changing the monomer concentration and the monomer ratio over a broad scope. The hydrogel possessed the superior mechanical performances: high tensile strength (~1.13 MPa), large stretchability (~1200%), and excellent compressive strength (~9 MPa) at high monomer concentration and NAGA/CBAA ratio. Introduction of CBAA could promote the self-healability, thermoplasticity of suparmolecular polymer hydrogels at lower temperatures, meanwhile dramatically improving anti-fouling property. Histological analysis and in vitro cytotoxicity assays testified the excellent biocompatibility of the hydrogel. This high strength supramolecular polymer hydrogel with integrated multiple functions holds promising potentials as a scaffold biomaterial for treating degenerated soft supporting tissues.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    16
    Citations
    NaN
    KQI
    []