Dual wavelength digital holographic imaging of layered structures

2020 
Abstract We present a dual wavelength digital holographic technique for three-dimensional microscopic imaging of layered structures, where layers are separated from one another by the axial distances exceeding the wavelength of imaging light. Our methodology not only provides the three-dimensional structure of each layer, but also allows the height differentiation of distinct layers. We have also implemented a technique suppressing low intensity signal when no reliable phase information can be extracted, based on the quality of the interference fringe pattern. We utilize a dual wavelength setup, where the combination of two overlapping interferometers enables simultaneous acquisition of two phase profiles. We demonstrate that this imaging modality is particularly well-suited for imaging of multilayered electrode structures embedded in glass.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    41
    References
    5
    Citations
    NaN
    KQI
    []