SWIRL: A sequential windowed inverse reinforcement learning algorithm for robot tasks with delayed rewards:

2019 
We present sequential windowed inverse reinforcement learning (SWIRL), a policy search algorithm that is a hybrid of exploration and demonstration paradigms for robot learning. We apply unsupervised learning to a small number of initial expert demonstrations to structure future autonomous exploration. SWIRL approximates a long time horizon task as a sequence of local reward functions and subtask transition conditions. Over this approximation, SWIRL applies Q-learning to compute a policy that maximizes rewards. Experiments suggest that SWIRL requires significantly fewer rollouts than pure reinforcement learning and fewer expert demonstrations than behavioral cloning to learn a policy. We evaluate SWIRL in two simulated control tasks, parallel parking and a two-link pendulum. On the parallel parking task, SWIRL achieves the maximum reward on the task with 85% fewer rollouts than Q-learning, and one-eight of demonstrations needed by behavioral cloning. We also consider physical experiments on surgical tensio...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    51
    References
    36
    Citations
    NaN
    KQI
    []