Error Performance Evaluation of Wireless Communication Systems Using Maximal Ratio Combining with Multiple Interferers

2001 
In this paper we evaluate the error performance of wireless communication systems using M-branch maximal ratio combining (MRC) with multiple cochannel interference. Three cochannel interference models are considered: (A) L independent identically distributed (i.i.d.) Nakagami-m cochannel interferers; (B) L independent cochannel interferers consisting of L-N Nakagami-m interferers and N Rayleigh interferers; (C) L independent cochannel interferers in which each interferer follows Nakagami-m distribution for a fraction of time and Rayleigh distribution for the remaining time. In addition, the desired signal assumes Nakagami-m fading. This paper considers that an exponential correlation model is assumed for the desired signals received on each branch, while the interferers are assumed independent. Closed-form expressions are derived for the probability density functions (PDFs) of the instantaneous signal-to-interference power ratio (SIR) at the output of the MRC for the three interference models. Using these SIR PDFs, further closed-form expressions to evaluate the outage probability (OTP) and the average bit error probability (BEP) of differential phase-shift keying (DPSK) are derived. Numerical results showing the impacts of the system parameters on the OTP and the average BEP are then presented.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    15
    References
    0
    Citations
    NaN
    KQI
    []