Recent achievements and advances in optical and electrochemical aptasensing detection of ATP based on quantum dots.

2021 
Abstract The design and fabrication of high sensitive and selective biosensing platforms areessential goals to precisely recognize biomaterials in biological assays. In particular, determination of adenosine triphosphate (ATP) as the main energy currency of the cells and one of the most important biomolecules in living organisms is a pressing need in advanced biological detection. Recently, aptamer-based biosensors are introduced as a new direct strategy in which the aptamers (Apts) directly bind to the different targets and detect them on the basis of conformational changes and physical interactions. They can also be conjugated to optical and electronic probes such as quantum dot (QD) nanomaterials and provide unique QD aptasensing platforms. Currently, these Apt-based biosensors with excellent recognition features have attracted extensive attention due to the high specificity, rapid response and facile construction. Therefore, in this review article, recent achievements and advances in aptasensing detection of ATP based on different detection methods and types of QDs are discussed. In this regard, the optical and electrochemical aptasensors have been categorized based on detection methods; fluorescence (FL), electrochemiluminescence (ECL) and photoelectrochemical (PEC) and they have been also divided to two main groups based on QDs; metal-based (M-based) and carbon-based (C-based) materials. Then, their advantages and limitations have been highlighted, compared and discussed in detail.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    144
    References
    0
    Citations
    NaN
    KQI
    []