Programming the full stack of an open-access quantum computer

2021 
We present a new quantum programming language called "Quala" that enables true full-stack programming of quantum hardware. Quala allows seamless integration of abstraction layers such as the digital circuit layer and the analog control pulse waveform layer. Additionally, the language supports user-issued low-level hardware instructions like FPGA actions. Mid-circuit measurements and branching decision logic support real-time, adaptive programs. This flexibility allows users to write code for everything from quantum error correction to analog quantum simulation. The combination of a user-facing calibration database and a powerful symbolic algebra framework provides users with an unprecedented level of expressiveness and transparency. We display the salient characteristics of the language structure and describe how the accompanying compiler can translate programs written in any abstraction layer into precisely timed hardware commands. We intend for this language to bridge the gap between circuit-level programming and physical operations on real hardware while maintaining full transparency in each level of the stack. This eliminates the need for "behind-the-scenes" compilation and provides users with insights into the day-to-day calibration routines.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    26
    References
    0
    Citations
    NaN
    KQI
    []