Three-Dimensional Numerical Model for Flow and Bed Deformation around River Hydraulic Structures
2005
This paper describes a numerical model developed to simulate flow and bed deformation around river hydraulic structures. The model solved the fully three-dimensional, Reynolds-averaged Navier–Stokes equation expressed in a moving boundary-fitted coordinate system to calculate the flow field with water and bed surfaces varying in time. A nonlinear k-e turbulence model was employed in order to predict flow near the structure where three-dimensional flow is dominant. The temporal change in bed topography was calculated by coupling a stochastic model for sediment pickup and deposition using a momentum equation of sediment particles in order to account for the effect of nonequilibrium sediment transport. In validating the numerical model, a spur dike and a bridge pier, which are considered to be typical river-engineering structures, were selected. By comparing the numerical results with observed laboratory experimental data, the model was found to reproduce flow and scour geometry around these structures with ...
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
65
References
148
Citations
NaN
KQI