Online predicting PCDD/F emission by formation pathway identification clustering and Box-Cox Transformation

2021 
Abstract The composition of the fuel and operational conditions change dramatically under the long-term operation of municipal solid waste incineration (MSWI). Therefore, it is difficult to provide effective rapid feedback to control PCDD/F emissions, presenting as International Toxic Equivalent Quantity (I-TEQ). To address this problem, a PCDD/F emission prediction method is developed, based on formation pathway identification clustering (FPIC) and Box-Cox transformation (BCT). Meanwhile, 1,2,4-trichlorobenzene is measured by the thermal desorption gas chromatography coupled to tunable-laser ionization time-of-flight mass spectrometry (TD-GC-TLI-TOFMS). In the method, FPIC includes de novo synthesis, chlorobenzene(CBz)-route synthesis, chlorophenol (CP)-route synthesis, and the chlorination of dibenzofuran (DD) or dibenzodioxin (DF). The PCDD/F emission data was divided into Cluster 1 (I-TEQ>0.1 ng/Nm3) and Cluster 2 (I-TEQ
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    34
    References
    3
    Citations
    NaN
    KQI
    []