High-Gain Graphene Transistors with a Thin AlOx Top-Gate Oxide

2017 
The high-frequency performance of transistors is usually assessed by speed and gain figures of merit, such as the maximum oscillation frequency f(max), cutoff frequency f(T), ratio f(max)/f(T), forward transmission coefficient S-21, and open-circuit voltage gain A(v). All these figures of merit must be as large as possible for transistors to be useful in practical electronics applications. Here we demonstrate high-performance graphene field-effect transistors (GFETs) with a thin AlOx gate dielectric which outperform previous state-of-the-art GFETs: we obtained f(max)/f(T) > 3, A(v) > 30 dB, and S-21 = 12.5 dB (at 10 MHz and depending on the transistor geometry) from S-parameter measurements. A dc characterization of GFETs in ambient conditions reveals good current saturation and relatively large transconductance similar to 600 S/m. The realized GFETs offer the prospect of using graphene in a much wider range of electronic applications which require substantial gain.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    27
    Citations
    NaN
    KQI
    []