A porous Ge/Si interface layer for defect-free III-V multi-junction solar cells on silicon

2019 
III-V solar cell cost reduction and direct III-V/Si integration can both be realized by depositing a thin layer of high-quality Ge on relatively low-cost Si substrates. However, direct epitaxial growth of Ge on Si substrates is difficult due to the 4% lattice mismatch between the film and the substrate. Threading dislocations (TDs) introduced within the Ge layer have a detrimental effect on device performances. The goal of this research is to address the perennial need to minimize the defect density of Ge epilayers grown on a Si substrate. We seek to accommodate the effects of the lattice mismatch by introducing a porous Si interface layer to intercept dislocations and prevent them from reaching the active layers of the device. The porous Si layer is formed through dislocation-selective electrochemical deep etching and thermal annealing. The porous layer created beneath the top Ge layer can both act as dislocation traps and as a soft compliant substrate, which displays high flexibility. Transmission electron microscopy (TEM) analysis of the Ge/porous Si interface shows that the lattice mismatch strain of the Ge films was almost relaxed. The surface roughness of this modified Ge/Si substrate has been reduced using chemical mechanical polishing (CMP) process to fulfil the requirements for epitaxy of III-V alloys. Finally, we present simulation results exploring the effect of threading dislocations on device performance.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    18
    References
    4
    Citations
    NaN
    KQI
    []