On-the-Fly Controlled Text Generation with Experts and Anti-Experts.

2021 
Despite recent advances in natural language generation, it remains challenging to control attributes of generated text. We propose DExperts: Decoding-time Experts, a decoding-time method for controlled text generation which combines a pretrained language model with experts and/or anti-experts in an ensemble of language models. Intuitively, under our ensemble, output tokens only get high probability if they are considered likely by the experts, and unlikely by the anti-experts. We apply DExperts to language detoxification and sentiment-controlled generation, where we outperform existing controllable generation methods on both automatic and human evaluations. Our work highlights the promise of using LMs trained on text with (un)desired attributes for efficient decoding-time controlled language generation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    4
    Citations
    NaN
    KQI
    []