Cellular-automata-based simulation of anisotropic crystal growth

2000 
Abstract Extending the simulation of anisotropic etching, a cellular-automata-based simulator is applied to anisotropic crystal growth. This simulator takes advantage of the equivalence between dissolution and growth of crystals. Metalorganic vapour-phase epitaxial growth experiments were performed on patterned (1 0 0)-oriented InP substrates with very deep V-shaped grooves with {1 1 1}A sidewalls to determine the relevant growth rates of InGaAs and InP. The capability of the simulation method is demonstrated by quantitative comparison of simulated and experimental results. In addition, the versatility of the model is shown with area-selective growth.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    24
    References
    2
    Citations
    NaN
    KQI
    []