Elevated temperature and waterlogging decrease cotton seed quality by altering the accumulation and distribution of carbohydrates, oil and protein.

2020 
Soil waterlogging and high-temperature events have occurred simultaneously in recent years in the Yangtze River basin cotton belt region of China, negatively affecting the development and quality of cottonseed. This study investigated the effects of the combination of elevated temperature (34.1/29.0°C) and waterlogging (3 or 6 days) on the accumulation and distribution of oil, protein and carbohydrates in cottonseed during flowering and boll development. The results showed that elevated temperature (ET) resulted in greater decreases in cottonseed biomass under waterlogging than under control conditions. The combination of waterlogging and ET significantly limited the accumulation of carbohydrates and oil contents. However, ET promoted protein accumulation and compensated for the negative effects of 3-day waterlogging on the final protein content. The combined ET and 6-day waterlogging significantly decreased the final contents of oil and protein by limiting carbon flux and NADPH supply due to the decreased activities of Phosphoenolpyruvate Carboxylase (PEPC, EC 4.1.1.31) and Glucose-6-Phosphate Dehydrogenase (G6PDH, EC 1.1.1.49). The PEPC activity was correlated more with protein content than oil content. In addition, simultaneous exposure to waterlogging and ET resulted in lower unsaturated fatty acid (UFA)/saturated fatty acid (SFA) ratios and essential amino acid (EAA)/non-essential amino acid (NAA) ratios than did exposure to the individual factors alone. These findings could provide the theoretical support for the prospective assessment of effects of high temperature and waterlogging stresses on cotton production under climate change, and they can help to develop effective techniques in cotton cultivation. This article is protected by copyright. All rights reserved.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    47
    References
    3
    Citations
    NaN
    KQI
    []