Relationship among DSB, DSB repair, and transcription prevents genome instability and cancer.

2020 
DNA double-strand break (DSB) is a serious type of DNA damage and is known to trigger multiple responses within cells. In the responses, novel relationships among DSB, DSB repair and transcription machineries are created. First, transcription is repressed if DSB occurs near or at the transcription site, termed DSB-induced transcriptional repression, which contributes to DSB repair with the aid of DNA damage-signaling pathways, ATM- or DNA-PKcs-signaling pathway. DSB-induced transcriptional repression is also regulated by transcriptional factors TLP1, NELF, and ENL, as well as chromatin remodeling and organizing factors ZMYND8, CDYL1, PBAF, and cohesin. Second, transcription and RNA promote DSB repair for genome integrity. Transcription factors such as LEDGF, SETD2, and transcriptionally active histone modification, H3K36, facilitate homologous recombination (HR) to overcome DSB. At transcriptional active sites, DNA:RNA hybrids, termed R-loops, which are formed by DSB, are processed by RAD52 and XPG leading to an activation of the HR pathway. Even in a transcriptionally inactive non-genic site, noncoding RNAs that are produced by RNA polymerase II, DICER, and DROSHA, help to recruit DSB repair proteins at the DSB sites. Third, transcriptional activation itself, however, can induce DSB. Transcriptional activation often generates specific DNA structures such as R-loops and topoisomerase-induced DSBs, which cause genotoxic stress and may lead to genome instability and consequently to cancer. Thus, transcription and DSB repair machineries interact and cooperate to prevent genome instability and cancer.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    72
    References
    18
    Citations
    NaN
    KQI
    []