A validation of SpekPy: A software toolkit for modelling X-ray tube spectra.

2020 
Abstract Purpose To validate the SpekPy software toolkit that has been developed to estimate the spectra emitted from tungsten anode X-ray tubes. The model underlying the toolkit introduces improvements upon a well-known semi-empirical model of X-ray emission. Materials and methods Using the same theoretical framework as the widely-used SpekCalc software, new electron penetration data was simulated using the Monte Carlo (MC) method, alternative bremsstrahlung cross-sections were applied, L-line characteristic emissions were included, and improvements to numerical methods implemented. The SpekPy toolkit was developed with the Python programming language. The toolkit was validated against other popular X-ray spectrum models (50 to 120 kVp), X-ray spectra estimated with MC (30 to 150 kVp) as well as reference half value layers (HVL) associated with numerous radiation qualities from standard laboratories (20 to 300 kVp). Results The toolkit can be used to estimate X-ray spectra that agree with other popular X-ray spectrum models for typical configurations in diagnostic radiology as well as with MC spectra over a wider range of conditions. The improvements over SpekCalc are most evident at lower incident electron energies for lightly and moderately filtered radiation qualities. Using the toolkit, estimations of the HVL over a large range of standard radiation qualities closely match reference values. Conclusions A toolkit to estimate X-ray spectra has been developed and extensively validated for central-axis spectra. This toolkit can provide those working in Medical Physics and beyond with a powerful and user-friendly way of estimating spectra from X-ray tubes.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    12
    Citations
    NaN
    KQI
    []