Ionic Sieving Through One-Atom-Thick 2D Material Enables Analog Nonvolatile Memory for Neuromorphic Computing.

2021 
The first report on ion transport through atomic sieves of atomically thin 2D material is provided to solve critical limitations of electrochemical random-access memory (ECRAM) devices. Conventional ECRAMs have random and localized ion migration paths; as a result, the analog switching efficiency is inadequate to perform in-memory logic operations. Herein ion transport path scaled down to the one-atom-thick (≈0.33 nm) hexagonal boron nitride (hBN), and the ionic transport area is confined to a small pore (≈0.3 nm2 ) at the single-hexagonal ring. One-atom-thick hBN has ion-permeable pores at the center of each hexagonal ring due to weakened electron cloud and highly polarized B-N bond. The experimental evidence indicates that the activation energy barrier for H+ ion transport through single-layer hBN is ≈0.51 eV. Benefiting from the controlled ionic sieving through single-layer hBN, the ECRAMs exhibit superior nonvolatile analog switching with good memory retention and high endurance. The proposed approach enables atomically thin 2D material as an ion transport layer to regulate the switching of various ECRAM devices for artificial synaptic electronics.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    41
    References
    0
    Citations
    NaN
    KQI
    []